金榜之路
学大陪你
个性化学习
关于我们  |  联系我们

高二数学:双曲线与椭圆问题

来源:学大教育     时间:2013-12-22     

双曲线与椭圆有共同焦点F1(0,-5)F2(0,5),点P(3,4)是双曲线的渐近线与椭圆的一个交点,求渐近线与椭圆的方程

      双曲线与椭圆有共同焦点F1(0,-5)F2(0,5),点P(3,4)是双曲线的渐近线与椭圆的一个交点,求渐近线与椭圆的方程 双曲线与椭圆的焦点F1(0,-5)、F2(0,5)在y轴上,所以: 设双曲线方程为:y^2/a^2-x^2/b^2=1 设椭圆方程为:y^2/m^2+x^2/n^2=1(m>n>0) 则,a^2+b^2=c^2=25…………………………………………(1) m^2-n^2=c^2=25………………………………………………(2) 已知点P(3,4)是双曲线的渐近线y=(a/b)x与椭圆的交点 所以:4=(a/b)*3 即:a/b=4/3…………………………………………………(3) 又点P(3,4)在椭圆上,所以: 16/m^2+9/n^2=1………………………………………………(4) 联立(1)(3)得到:a^2=16,b^2=9 所以:双曲线方程为:y^2/16-x^2/9=1 联立(2)(4)得到:m^2=40,n^2=15 所以:椭圆方程为:x^2/15+y^2/40=1

领取学习报告+1对1个性化辅导试听课

  • 获取验证码

网站地图 | 全国免费咨询热线: | 咨询时间:8:00-23:00(节假日不休)

违法和不良信息举报电话:400-810-5688 举报邮箱:info@xueda.com 网上有害信息举报专区

京ICP备10045583号-6 学大Xueda.com 版权所有 北京学大信息技术集团有限公司 京公网安备 11010502031324号

增值电信业务经营许可证京B2-20100091 电信与信息服务业务经营许可证京ICP证100956